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In this work we present a further analytical development and a numerical implementation of the recently
suggested theoretical model for highly nonlinear potential long-crested water waves, where weak three-
dimensional effects are included as small corrections to exact two-dimensional equations written in the con-
formal variables �V. P. Ruban, Phys. Rev. E 71, 055303�R� �2005��. Numerical experiments based on this
theory describe the spontaneous formation of a single weakly three-dimensional large-amplitude wave �alter-
natively called freak, killer, rogue, or giant wave� on the deep water.
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I. INTRODUCTION

Rogue waves are extremely high, steep, and dangerous
individual waves which sometimes appear suddenly on a sea
surface among relatively low waves �see, for instance, the
recent works �1–3�, and references therein�. The crest of a
rogue wave can be three or even more times higher than the
crests of neighboring waves. Different physical mechanisms
contribute to the rogue wave phenomenon: dispersion en-
hancement, geometrical focusing, wave-current interaction
�1�, but the most important at the final stage is the nonlinear
self-focusing mechanism resulting in accumulation of the
wave energy and momentum on the scale of a single wave-
length �3�. For weakly modulated periodic planar Stokes
waves this mechanism leads to the well-known Benjamin-
Feir instability �4,5�, generated by four-wave nonlinear reso-
nant interactions 2→2. This instability is predominantly two
dimensional �2D�, and it is dominant for low amplitudes
�h /��0.09 where h is the peak-to-trough height and � is the
length of the Stokes wave �6��. For larger steepness param-
eter h /�, another, genuinely three-dimensional instability be-
comes dominant, which is generated by five-wave interac-
tions 3→2, and results in the well-known crescent, or
“horse-shoe” wave patterns �see �7–9�, and references
therein�. It is important that real ocean giant waves are ob-
served in situations when this 3D instability is not principal,
and all the waves are typically long crested, corresponding to
a narrow-angle Fourier spectrum. Thus, many essential fea-
tures of a rogue wave formation can be observed already in
purely 2D geometry, as in the works by Zakharov and co-
workers �2,3�. For instance, in Ref. �3� a numerical giant
wave was computed with the impressive spatial resolution of
up to 2�106 points. Zakharov and co-workers simulated an
exact system of dynamic equations for 2D free-surface invis-
cid potential flows, written in terms of the so-called confor-
mal variables, which make the free boundary effectively flat
�the corresponding exact 2D theory is described in Refs.
�10–16�, a different approach can be found in Ref. �17��.

With these variables, highly nonlinear equations of motion
for planar water waves are represented in an exact and com-
pact form containing integral operators diagonal in the Fou-
rier representation. Such integrodifferential equations are
easy to treat numerically with modern libraries for the dis-
crete fast Fourier transform �FFT� as, for example, the fastest
Fourier Transform in the West �FFTW� �18�. Recently, by
introducing an additional conformal mapping, the exact 2D
conformal description has been generalized to nonuniform
and time-dependent bottom profiles, so that a very accurate
2D modeling of near-coastal waves and tsunamilike pro-
cesses has been possible �19,20�.

However, real sea waves are never ideally planar, and the
second horizontal dimension might play an important role in
the wave dynamics. Various numerical methods have been
developed for nonlinear 3D surface gravity waves �see
�9,21,22� for a review�. Some of them are based on exact
formulation of the problem �the boundary integral method
and its modifications; see �23–25�, and references therein�,
another approach uses approximate equations of motion, as
the Boussinesq-type models �26,27�, the equations derived
by Matsuno �28�, by Choi �29�, the weakly nonlinear Za-
kharov equations �30,31�, or the equations for wave
packets—the nonlinear Schroedinger equation �NLS� and its
extensions �32–35�. The numerical methods based on exact
equations are quite “expensive” and thus provide a relatively
low spatial resolution �typically 128�64, as in the recent
work �25� for essentially 3D waves�. On the other hand, the
applicability of the approximate equations is limited by the
condition that the waves must not be too steep. To fill this
gap, some new approximate, relatively compact explicit
equations of motion for highly nonlinear 3D waves were
needed as the basis for a new numerical method. Recently, as
an extension of the exact conformal 2D theory, a weakly 3D
conformal theory has been suggested �36�, which is valid for
steep long-crested waves. Equations of this theory contain
3D corrections of the order of �= �lx / lq�2, where lx is a typi-
cal wave length, and lq is a large transversal scale along the
wave crests. In Ref. �36�, the general case was considered,
with a static nonuniform quasi-one-dimensional bottom pro-
file. Since the corresponding general equations are rather in-
volved, it is natural to focus on some simple particular cases
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in the first place, for instance, on the deep water limit. The
purpose of the present work is a further development of the
weakly 3D conformal theory and its numerical implementa-
tion for the most simple deep water case. Our main result
here is that we have developed a numerical scheme based on
FFT which is sufficiently simple, accurate, and fast simulta-
neously. As an application, we have simulated a freak wave
formation with the final resolution up to 16384�256.

This paper is organized as follows. In Sec. II we adopt for
the deep water limit the general weakly 3D fully nonlinear
theory described in Ref. �36�. We also suggest some modifi-
cation of the obtained dynamical system which results in the
correct linear dispersion relation not only within a small re-
gion near the k1 axis, but in the whole Fourier plane. In Sec.
III we describe our numerical method and present numerical
results for the problem of a rogue wave formation. Finally,
Sec. IV contains our summary and discussion.

II. WEAKLY 3D NONLINEAR THEORY

A. General remarks

It is a well-known fact that a principal difficulty in the 3D
theory of potential water waves is the general impossibility
to solve exactly the Laplace equation for the velocity poten-
tial ��x ,y ,q , t�,

�xx + �yy + �qq = 0, �1�

in the flow region −��y���x ,q , t�, with the given bound-
ary conditions

���y=��x,q,t� = 	�x,q,t�, ���y=−� = 0. �2�

�Here x and q are the horizontal Cartesian coordinates, y is
the vertical coordinate, while the symbol z will be used for
the complex combination z=x+ iy.� Therefore a compact ex-
pression is absent for the Hamiltonian functional of the sys-
tem,

H��,	� =
1

2
� dxdq�

−�

��x,q,t�

��x
2 + �y

2 + �q
2�dy +

g

2
� �2dxdq

	 K��,	� + P��� , �3�

�the sum of the kinetic energy of the fluid and the potential
energy in the vertical gravitational field g�. The Hamiltonian
determines canonical equations of motion �see �31,37,38�,
and references therein�

�t = �
H/
	�, − 	t = �
H/
�� �4�

in accordance with the variational principle 

 L̃ dt=0,

where the Lagrangian is L̃=
	�tdx dq−H.
In the traditional approach, the problem is partly solved

by an asymptotic expansion of the kinetic energy K on a
small parameter—the steepness of the surface �see Refs.
�31,37,39�, and references therein�. As the result, a weakly
nonlinear theory is generated, which is not good in describ-
ing large-amplitude steep waves �see Ref. �39� for a discus-
sion about the limits of such theory; practically, the wave
steepness ka �k is a wave number, a is an amplitude� should

be not more than 0.1 �that is h /��0.1/��0.03��. Below in
this section we consider a different, recently developed
theory �36� �adopted here for the case of infinite depth�,
which is based on another small parameter—the ratio of a
typical length of the waves propagating along the x axis, to a
large scale along the transversal horizontal direction, denoted
by q �alternatively, it is the ratio of typical wave numbers
kq /kx in the Fourier plane �kx ,kq��. Thus, we define �
= �lx / lq�2�1 and note: the less this parameter, the less our
flow differs from a purely 2D flow, and the more accurate the
equations are. A profile y=��x ,q , t� of the free surface and a
boundary value of the velocity potential 	�x ,q , t�
	��x ,��x ,q , t� ,q , t� are allowed to depend strongly on the
coordinate x, while the derivatives over the coordinate q will
be small: ��q���1/2, �	q���1/2.

B. Conformal variables in 3D

In the same manner as in the exact 2D theory �10,13�,
instead of the Cartesian coordinates x and y, we use curvi-
linear conformal coordinates u and v, which make the free
surface effectively flat:

x + iy 	 z = z�u + iv,q,t�, − � � v � 0, �5�

where z�w ,q , t� is an analytical function on the complex vari-
able w	u+ iv without any singularities in the lower half-
plane −��v�0. The profile of the free surface is now given
in a parametric form by the formula

X�u,q,t� + iY�u,q,t� 	 Z�u,q,t� = z�u + 0i,q,t� . �6�

Here the real functions X�u ,q , t� and Y�u ,q , t� are related to

each other by the Hilbert transform Ĥ:

X�u,q,t� = u − ĤY�u,q,t� . �7�

The Hilbert operator Ĥ is diagonal in the Fourier representa-
tion: it multiplies the Fourier harmonics Yk�q , t�
	
Y�u ,q , t�e−ikudu by i sign k, so that

ĤY�u,q,t� =� �i sign k�Yk�q,t�eiku�dk/2�� . �8�

Thus, the Hilbert operator can be represented symbolically as

Ĥ= i sign k̂, where k̂=−i�̂u. In general, one can consider any

function L�k̂� of the linear operator k̂. By definition, the Fou-
rier spectrum fk	
f�u�e−ikudu of a complex function f�u� is

multiplied by L�k� when the operator L�k̂� is applied to f�u�,
that is L�k̂�f�u�	
L�k�fke

iku�dk /2��. In particular, we will

deal in this paper with the linear operator e−k̂v acting as de-
fined below:

e−k̂vf�u� 	 � eik�u+iv�fk�dk/2�� . �9�

One can see that, depending on the sign of the real parameter
v, the above integral over k only exists if the spectrum fk
rapidly decays at large negative or positive k. Obviously, if
the integral �9� with a particular v does exists for all u, then
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it is nothing else but the analytical continuation of the func-
tion f�u� from the real axis to the line u+ iv in the complex

plane, f�u+ iv�=e−k̂vf�u�. It is important that those functions
f�u� which only contain Fourier harmonics with negative
wave numbers k �that is, fk=0 for k0� can be analytically
continued into the lower complex half-plane. For such func-
tions there is a relation between the real and imaginary parts

on the real axis, Ref�u�=−Ĥ Im f�u�. An example for this is

our conformal mapping: Z�u ,q , t�−u= �i− Ĥ�Y = i�1
−sign k̂�Y, and therefore z�w ,q , t�=e−k̂vZ�u ,q , t�.

Let us now derive a general form of the equations of
motion in the conformal variables. We denote the boundary
value of the velocity potential as ���v=0		�u ,q , t�. For
equations to be shorter, below we do not indicate the argu-

ments �u ,q , t� of the functions 	, Z, and Z̄ �the overline
denotes complex conjugate�. The Lagrangian for 3D deep

water waves in terms of the variables 	, Z, and Z̄ can be
written as follows �compare with �36��:

L =� ZtZ̄u − Z̄tZu

2i
�	 du dq − K�	,Z,Z̄�

−
g

2
� Z − Z̄

2i
�2Zu + Z̄u

2
�du dq +� �Ĥ�Z − Z̄

2i
�

+ �Z + Z̄

2
− u��du dq , �10�

where the indefinite real Lagrangian multiplier ��u ,q , t� has
been introduced in order to take into account the relation �7�.
Equations of motion follow from the variational principle

A=0, with the action A	
L dt. So, the variation by 
	
gives us the first equation of motion—the kinematic condi-
tion on the free surface

Im�ZtZ̄u� = �
K/
	� . �11�

Now we divide this equation by �Zu�2 and obtain Im�Zt /Zu�
= �
K /
	� / �Zu�2. It is important that the function zt /zw is
analytical in the lower half-plane of the complex variable
w=u+ iv and tends to zero as v→−�. Therefore at v=0 the

relation Re�Zt /Zu�=−Ĥ Im�Zt /Zu� takes place. Thus, we ob-
tain the time-derivative-resolved equation

Zt = iZu�1 + iĤ� �
K/
	�
�Zu�2 � . �12�

Further, variation of the action A by 
Z gives us the second
equation of motion:

	uZ̄t − 	tZ̄u

2i
� = �
K


Z
� +

g

2i
Im�Z�Z̄u −

�Ĥ − i��
2i

.

�13�

Again we note that the complex function �Ĥ− i�� is analyti-
cally continued into the lower half-plane. Therefore after
multiplying Eq. �13� by −2iZu we have

�	t + g Im Z��Zu�2 − 	uZ̄tZu = �i − Ĥ��̃ − 2i�
K

Z

�Zu,

�14�

where �̃=YuĤ�−Xu� is another real function. Taking the

imaginary part of Eq. �14� and using Eq. �11�, we find �̃

�̃ = 	u


K

	

� + 2 Re�
K

Z

�Zu� . �15�

After that, the real part of Eq. �14� gives us the Bernoulli
equation in a general form:

	t = − g Im Z − 	uĤ �
K/
	�
�Zu�2 �

+
Im��1 − iĤ��2�
K/
Z�Zu + �
K/
	�	u��

�Zu�2
. �16�

Equations �12� and �16� completely determine the evolu-
tion of the system, provided that the kinetic energy func-

tional K�	 ,Z , Z̄� is explicitly given. It should be emphasized
that in our description a general expression for K remains
unknown. However, under the conditions �zq��1, ��q��1,
the potential ��u ,v ,q , t� is efficiently expanded into a series
on the powers of the small parameter �:

� = ��0� + ��1� + ��2� + ¯ , ��n� � �n, �17�

where ��n+1� can be calculated from ��n�, and the zeroth-
order term ��0�=Re��w ,q , t� is the real part of an easily
represented �in integral form� analytical function with the
boundary condition �Re��v=0=	�u ,q , t�. Correspondingly,
the kinetic-energy functional will be written in the form

K = K�0� + K�1� + ¯ , K�n� � �n, �18�

where K�0��	� is the kinetic energy of a purely 2D flow,

K�0��	� =
1

2
� ���u

�0��2 + ��v
�0��2�du dv dq

= −
1

2
� 	Ĥ	udu dq , �19�

and the other terms are corrections due to gradients along q.
Now we are going to calculate a first-order correction K�1�.

C. First-order corrections

As a result of the conformal change of two variables, the
kinetic energy functional is determined by the expression

K =
1

2
� ��u

2 + �v
2 + J�Q · ���2�du dv dq , �20�

where the Cauchy-Riemann conditions xu=yv, xv=−yu have
been taken into account, and the following notations are
used:

J 	 �zu�2, Q 	 �a,b,1� ,
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a =
xvyq − xqyv

J
� �1/2, b =

yuxq − yqxu

J
� �1/2.

Consequently, the Laplace equation in the new coordinates
takes the form

�uu + �vv + � · �QJ�Q · ���� = 0, �21�

with the boundary conditions

���v=0 = 	�u,q,t�, ���v=−� = 0. �22�

In the limit ��1 it is possible to write the solution as the
series �17�, with the zeroth-order term satisfying the 2D
Laplace equation �uu

�0�+�vv
�0�=0, ���v=0

�0� =	�u ,q , t�. Thus, it
can be represented as ��0�=Re��w ,q , t�, where

��w,q,t� = �
−�

+�

�1 − sign k�	k�q,t�eikw dk

2�
, �23�

and 	k�q , t�	
	�u ,q , t�e−ikudu. On the free surface

��u + i0,q,t� 	 ��u,q,t� = �1 + iĤ�	�u,q,t� . �24�

For all the other terms in Eq. �17� we have the relations

�uu
�n+1� + �vv

�n+1� + � · �QJ�Q · ���n��� = 0 �25�

and the boundary conditions ���n+1��v=0=0. Noting that

��u

�0��u
�1�+�v

�0��v
�1��du dv=0 �it is easily seen without ex-

plicit calculation of ��1� after integration by parts�, we have
in the first approximation

K�1� =
1

2
� J��q

�0� + a�u
�0� + b�v

�0��2du dv dq

=
1

2
� zuz̄uRe��q −

�uzq

zu
��2

du dv dq . �26�

Now we have to integrate over v from −� to 0 in the above

expression. Since z�w� is represented as z�u+ iv�=e−k̂vZ�u�
and analogously ��u+ iv�=e−k̂v��u�, we can use for v inte-
gration the following auxiliary formulas:

� du�
−�

0

�e−k̂vA�u���e−k̂vB�u��dv

= − �
−�

0 AkBk

2k

dk

2�

= −
i

2
� �B�u��̂u

−1A�u��du . �27�

Now we apply the above formulas to appropriately decom-
posed Eq. �26� and, as a result, we obtain an expression of a

form K�1�=F�� ,�̄ ,Z , Z̄�, where the functional F is defined
as follows �compare with �36��:

F =
i

8
� �Zu�q − Zq�u��̂u

−1�Zu�q − Zq�u�du dq

+
i

16
� ���Zu�q − Zq�u�2/Zu��Z − u�

− �Z − u���Zu�q − Zq�u�2/Zu��du dq . �28�

Here the combination �Z−u� is written instead of Z just for
convenience, as it is finite at the infinity. Actually the equa-
tions of motion “do not feel” this difference. In the deriva-
tion we have used the identity 
��Zu�q−Zq�u�2 /Zu�u du=0,
which holds because the integrand is analytical in the lower
half-plane. From here one can express the variational deriva-
tives �
K�1� /
	� and �
K�1� /
Z� by the formulas


K�1�


	
= 2 Re�1 − iĤ�


F

�

�,

K�1�


Z
=


F

Z

. �29�

The derivatives �
F /
�� and �
F /
Z� are calculated in a
standard manner:


F

�

=
i

8
Zq��Zu�q − Zq�u� + �̂u���q − Zq�u/Zu��Z − u���

−
i

8
Zu�̂q��̂u

−1�Zu�q − Zq�u� + ��q − Zq�u/Zu��Z − u�� ,

�30�


F

Z

= −
i

8
�q��Zu�q − Zq�u� + �̂u���q − Zq�u/Zu��Z − u���

+
i

8
�u�̂q��̂u

−1�Zu�q − Zq�u� + ��q − Zq�u/Zu��Z − u��

+
i

16
��̂u���q − Zq�u/Zu�2�Z − u��

− ��q − Zq�u/Zu�2Zu� . �31�

Now one can substitute �
K /
	��−Ĥ	u+ �
K�1� /
	� and
�
K /
Z���
K�1� /
Z� into the equations of motion �12� and
�16�. Thus, the required weakly 3D equations for deep water
waves are completely derived:

Z = u + �i − Ĥ�Y�u,q,t�, Zu = 1 + �i − Ĥ�Yu. �32�

Zt = − iZu�1 + iĤ���Ĥ	u − �
K�1�/
	��/�Zu�2� , �33�

	t = − gY + 	uĤ��Ĥ	u − �
K�1�/
	��/�Zu�2� + Ĥ�	u�Ĥ	u

− �
K�1�/
	���/�Zu�2 − 2 Re„�Ĥ + i��Zu�
K�1�/
Z��…/�Zu�2.

�34�

D. Modification of the Hamiltonian

It can be easily obtained that the linear dispersion relation
for the systems �28�–�34� is
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�2�k,m� = g�k��1 +
1

2

m2

k2 � , �35�

where m is the wave number in the q direction �the wave
number k in the u direction was introduced earlier�. Obvi-
ously, here we have the first two terms from the expansion of
the exact 3D linear dispersion relation

�2�k,m� = g�k2 + m2 �36�

on the powers of m2 /k2�1. Thus, the systems �28�–�34�
have a nonphysical singularity in the dispersion relation near
the m axis in the Fourier plane �k ,m�, where k /m→0. There-
fore, for convenience of the numerical modeling, some regu-
larization could be useful in the approximate Hamiltonian
K�0�+K�1�+P, where P is the potential energy,

P =
g

2
� Z − Z̄

2i
�2Zu + Z̄u

2
�du dq . �37�

Also, the correct linear dispersion relation is desirable to
improve the behavior of the model on small perturbations
with �m�� �k�. Of course, a possible regularization is not
unique as we keep only zeroth- and first-order terms on �
= �m /k�2 in the Hamiltonian. Below we suggest a modifica-
tion which adds terms of the order O��2� to the approximate

Hamiltonian P+K�0�+K�1� �a modified Hamiltonian H̃=P
+K̃ will remain valid up to ��. First of all, instead of the the
functional K�0� we use another functional, K�0�

→ � 1
2

�
	Ĝ0	 du dq, where the linear operator Ĝ0 is diagonal
in the Fourier representation:

G0�k,m� = �k2 + m2 −
1

2

�k�m2

k2 + m2 . �38�

Besides that, we change the operator i�̂u
−1=1/k in the first

line of Eq. �28� by the operator k / �k2+m2�= i�̂u�2
−1, which is

less singular. As a result, we have the modified approximate
kinetic-energy functional in the form

K̃ =
1

2
� 	Ĝ0	 du dq + F̃ , �39�

F̃ =
i

8
� �Zu�q − Zq�u��̂u�2

−1�Zu�q − Zq�u�du dq

+
i

16
� ���Zu�q − Zq�u�2/Zu��Z − u�

− �Z − u���Zu�q − Zq�u�2/Zu��du dq . �40�

The linear dispersion relation resulting from K̃ is correct in
the whole Fourier plane. Besides that, the zeroth- and the

first-order terms on � in K̃ are the same as in K�0�+K�1�. The
system of equations, corresponding to the modified Hamil-

tonian H̃, consists of Eq. �32� and the following equations:

Zt = iZu�1 + iĤ���
K̃/
	�/�Zu�2� , �41�

	t = Im��1 − iĤ��2�
F̃/
Z�Zu + �
K̃/
	�	u��/�Zu�2 − gY

− 	uĤ��
K̃/
	�/�Zu�2� , �42�


K̃

	

= Ĝ0	 + 2 Re�1 − iĤ�

F̃

�

� , �43�


F̃

�

=
i

8
Zq�̂u��̂u�2

−1�Zu�q − Zq�u� + ��q − Zq�u/Zu��Z − u��

−
i

8
Zu�̂q��̂u�2

−1�Zu�q − Zq�u�

+ ��q − Zq�u/Zu��Z − u�� , �44�


F̃

Z

= −
i

8
�q�̂u��̂u�2

−1�Zu�q − Zq�u� + ��q

− Zq�u/Zu��Z − u�� +
i

8
�u�̂q��̂u�2

−1�Zu�q − Zq�u�

+ ��q − Zq�u/Zu��Z − u�� +
i

16
��̂u���q

− Zq�u/Zu�2�Z − u�� − ��q − Zq�u/Zu�2Zu� . �45�

These equations were integrated numerically as it is de-
scribed in the following section. It is interesting to note that
we considered also another choice for the regularization, re-
sulting in the correct linear dispersion relation as well, with
G0= �k2+m2 /2��k2+m2�−1/2 instead of �k� in K�0�, and �k2

+m2�−1/2 instead of 1/ �k� in the first term in K�1�. The numeri-
cal results were found very close in both cases, since the
wave spectra were concentrated in the region m2 /k2�1.

III. NUMERICAL METHOD AND RESULTS

In our numerical simulations, we used the following pro-
cedure. A rectangular domain Lu�Lq with the periodic
boundary conditions in the �u ,q� plane was reduced to the
standard dimensionless size 2��2� �the aspect ratio �
= �Lu /Lq�2 was taken into account�. This standard square was
discretized by N�L points �un ,ql�=2��n /N , l /L�, with inte-
ger n and l. The time variable was rescaled to give g=1. As
the primary dynamical variables, the �complex� Fourier com-
ponents Ykm and Pkm= �k2+�m2�1/4	km were used, where k
and m were integer numbers in the limits 0�k�K, −M
�m�M, with K�3N /8, M �3L /8. For negative k, the
properties Y−k,−m=Ykm and P−k,−m= Pkm were implied. It
should be noted that after rescaling u, q, and t, the linear
dispersion relation has been �km= �k2+�m2�1/4, and that the
combinations

akm =
Ykm + iPkm

�2�km

in the linear limit coincide with the normal complex vari-
ables �13,37�.
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Using the FFTW library �18�, the quantities Z�un ,ql�,
��un ,ql�, their corresponding u and q derivatives, and

Ĝ0	�un ,ql� are represented by two-dimensional complex ar-
rays. The variational derivatives �44�, �45�, and �43�, and the
right-hand sides of Eqs. �41� and �42� are then computed and
transformed into Fourier space in order to evaluate the mul-
tidimensional function which determines the time derivatives
of Ykm and Pkm. This function is used in the standard fourth-
order Runge-Kutta procedure �RK4� for the time integration
of the system. After each RK4 step, a large-wave-number
filtering of the arrays Ykm and Pkm is carried out, so that only
the Fourier components with 0�k�Kef f, −Meff �m�Meff
are kept, where Kef f �N /4 and Meff �L /4. In this case “lost”
are those discrete Fourier modes that are not appropriate to
approximate smooth �analytical� functions. The intermediate
cut-offs K and M were introduced empirically to improve
numerical stability.

To estimate the accuracy of the computations, conserva-

tion of the total energy H̃ and the mean surface elevation are
monitored.

Typically, at t=0 we put N=212, L=26, and the initial time
step �=0.01. During the computation, as wave crests become
more sharp and the spectra get broadened, we adaptively
double N �together with K, Kef f� and L �together with M,
Meff� several times, with the time step half-decreasing when
N is doubled. At the end, when a giant wave is formed, we
have N=213–14, L=27–8. As a result of such adaptive scheme,
the conservation of the total energy is kept up to 5–6 decimal
digits during most part of the evolution. Only at a very late
stage, when N and L are not allowed to double anymore, the
conservation is just up to 3–4 digits, and the filtering of the
higher harmonics becomes more influential.

The efficiency of the above described numerical method
crucially depends on the speed of the FFT routine, since
most of the computational time �approximately 80%� is spent
in the Fourier transforms. To compute the evolution through
the unit �dimensionless� time period, on a modern PC �Intel
Pentium IV 3.2 GHz� it takes 3–4 min with N=4096, L
=64, �=0.01 �2 s per time step�, and more than 1 h with N
=8192, L=256, �=0.005 �20 s per step�. The total time
needed for a single numerical rogue wave experiment is
about 3–5 days. As the algorithm consists solely of single-
point operations and the fast Fourier transformation, the
overall complexity for one integration step can be estimated
as NL ln�NL�. This roughly corresponds to the scaling of
other fast methods like the boundary element method �BEM�
with fast multipole �FM� integration. However, we expect a
better performance of the present algorithm due to the large
number of local operations that result from the Fourier di-
agonalization �for comparison: Fochesato and Dias report
computation times per step of more than 300 s of their FM
accelerated BEM code for a 60�40�4 grid �41��. Further,
any complications such as delicate boundary integrals in
BEM and approximation errors in fast multipole methods are
avoided here at the cost of the explicit physical assumption
of weak three-dimensionality. In addition, we expect our
code to show good parallel scaling with an almost trivial
parallelization �available already for the FFTW parts�, al-
though this step still has to be done.

Two numerical experiments are reported below for hori-
zontal physical box sizes of 4�4 km �the final resolution
was 16384�256 in both�. In the first of them, the main
mechanism for a big wave formation is the linear dispersion,
when a group of longer waves overtakes a group of shorter
waves, and their amplitudes are added �see �1� for a discus-
sion�. However, due to nonlinear effects, in maximum the
crest is higher than simply the sum of two amplitudes. In the
second experiment, a giant wave is formed by an essentially
nonlinear mechanism �due to the Benjamin-Feir instability�
from a slightly modulated periodic wave, close to a station-
ary Stokes wave.

A. “Linear” big wave

In the first numerical experiment �referred to as �A��, the
initial state was a composition of two spatially separated
wave groups, as shown in Fig. 1. Analytical formulas for the
initial data are given below:

Y�u,q,0� = �
�=1

2

�����−1Ỹ�A�,��� ,

	�u,q,0� = �
�=1

2

C������−1	̃�A�,��� ,

C� = ��1 + A�
2�/����� ,

A1 = 0.12�1 − cos q��1 − cos u�/4,

�1 = 17u + 0.1� cos q ,

A2 = 0.14�1 − �1 − cos q��1 − cos u�/4�exp�0.1 cos u� ,

�2 = 23u + 0.1� sin q ,

where functions Ỹ�a ,�� and 	̃�a ,�� are defined as follows

Ỹ�a,�� = − 0.5a2 + a cos � + a2 cos 2� + 0.9a3 cos 3� ,

FIG. 1. �Color online� �A�. Map of the free surface at t=0.
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	̃�a,�� = a sin � + a2 sin 2� + 0.9a3 sin 3� .

Two typical dimensionless wave numbers are present, k1
=17, corresponding to the wave length �1�235 m �at the
central part of Fig. 1� and k2=23 ��2�174 m�. At t=0 the
highest crests were about 5 m in both groups �see Fig. 2�.
Due to a difference in the group velocities �cgr��k�−1/2�, the
longer waves move faster and after some time overtake the
shorter waves. As a result of almost linear superposition, big
waves with high crests and deep troughs are formed, sepa-
rated by the spatial period 2� / �k2−k1�, with the maximum
amplitude about 12 m, which is approximately equal to the
sum of the individual amplitudes �the nonlinearity slightly
increases the maximum height�. The corresponding numeri-
cal results are presented in Figs. 3 and 4.

B. Nonlinear big wave

Our second numerical experiment �referred to as �B�� is a
weakly 3D analog of the 2D numerical experiments per-
formed by Zakharov and co-workers �2,3�, when a slightly
modulated periodic Stokes wave evolves to produce a giant
wave. However, with two horizontal dimensions we could
not achieve the same very high resolution as Zakharov with

co-workers did for the case of a single horizontal dimension
�16384�256 in our experiment �B� versus 2�106�1 in
Ref. �3��. Our computations were terminated well before the
moment when a giant wave reached its maximum height and
began to break, since the number of the employed Fourier
modes became inadequate. The accuracy could be better with
larger N and L, and with a smaller �, but it required much
more memory and computational time. In general, to resolve
in conformal variables a sharp wave crest with a minimal
radius of curvature � and with the asymptotic angle 2� /3 �as
in the limiting Stokes wave�, the required number Kef f

should adaptively vary as �−3/2�1/2. The power − 3
2 results in

strong difficulties when � is small. Another important point
is that Zakharov and co-workers were able to reformulate the
purely 2D equations in terms of the “optimal” complex vari-
ables R=1/Zu and U= i�u /Zu, thus obtaining very elegant
and compact cubic evolution equations �the Dyachenko
equations �15��. In our 3D case, a similar simplification
seems to be impossible, and we dealt directly with the origi-
nal conformal variables Z and �. Nevertheless, our results
are sufficiently accurate to reproduce the fact of a giant wave
formation.

As the initial state for the experiment �B�, we took a
weakly modulated periodic wave with the main wave num-

FIG. 4. �A�. Wave profiles at t=59.2.

FIG. 5. �B�. Maximum wave height versus dimensionless
time.

FIG. 2. �A�. Initial wave profiles for eight equidistant values q
=Lq�0,1 /8 , . . . ,7 /8�.

FIG. 3. �Color online� �A�. Map of the free surface at t=59.2
�the physical time is 7 min 57 sec�.
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ber k=19 ���210 m�, similar to a Stokes wave. The ana-
lytical formulas are

Y�u,q,0� = ����−1Ỹ�0.14,�� ,

	�u,q,0� = ��1 + 0.142�/��������−1	̃�0.14,�� ,

� = 19u + 0.25� sin u cos q + 0.2� sin q ,

where the functions Ỹ�a ,�� and 	̃�a ,�� are the same as were
introduced earlier. After some period of evolution, the
Benjamin-Feir instability developed and resulted in a forma-
tion of a big wave, with the amplitude 13.9 m at t=222.4
versus the initial maximum amplitude 5.3 m �see Figs. 5–9
and compare with Ref. �3��. The peak-to-trough height h* of
this computed rogue wave was more than 20 m at t=222.4
�the steepness parameter h* /��0.1�, and it was still growing
at that moment �so, at t=222.54 we observed the amplitude
14.16 m, but the accuracy was already not sufficient�. It is
interesting that this numerical solution has a well-defined
envelope until a very final stage of evolution. Thus, our
equations may serve to test the simplified wave-packet mod-
els like the extended NLS equations �32–34�.

IV. SUMMARY AND DISCUSSION

We have developed an efficient numerical method for
modeling the rogue wave phenomenon. The underlying
theory for the method is the weakly 3D formulation of the
free-surface dynamics reported earlier �36� with slight modi-
fications. In particular, the Hamiltonian has been regularized
in a way to give the exact linear 2D dispersion relation in the
entire Fourier space, and a filter removing shortest waves has
been added in the numerical implementation. With these
techniques, weakly three-dimensional effects could be in-
cluded in simulations of rogue wave formation as illustrated
in the two examples given �a movie for the third example can
be found at URL �40��. In particular, the genuinely nonlinear
2D instability reported by Zakharov and co-workers �2,3�
�which is considered by many researchers as the main
mechanism for rogue wave phenomenon�, could be verified
in the weakly 3D regime despite the relatively low resolution
�compared to 2D� of 16384�256 points used here. The re-
sults indicate that the assumption of weak variation in the
third direction holds even in the late stage of rogue wave
formation, which demonstrates the consistency of the expan-
sion in �= �lx / lq�2 and thereby the applicability of the present
theory.

FIG. 6. �Color online��B�. Map of the free surface at t=150
�20 min 09 sec�.

FIG. 7. �Color online� �B�. Map of the free surface at t=210
�28 min 13 sec�.

FIG. 8. �Color online� �B�. Map of the free surface at t=222.4
�29 min 53 sec�.

FIG. 9. �B�. Rogue wave profiles at t=222.4.
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However, it should be emphasized that our theoretical
model is not intended to study genuinely 3D dynamics, for
instance the “horse-shoe” wave patterns. Of course, it may
be interesting to see what happens with the model when it
loses its applicability, but in the end those results are not
physical. Nevertheless, we performed some numerical ex-
periments �they are not reported here� with short-crested

waves ���1� and observed at least qualitatively reasonable
results.

Planned further steps in the continuation of this work are
a more efficient computational implementation through par-
allelization of the code and the inclusion of additional effects
like a bottom profile, which is already covered by the for-
malism reported earlier �36�.
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